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Mathematics books and journals do not look as beautiful as they used to. It is not
that their mathematical content ig unsatisfactory, rather that the old and well-developed
traditions of typesetting have become too expensive, Fortunately, it now appears that
mathematics itself can be uzed to solve this problem.

A first step in the solution is to devisa a method for unambiguously specifiying
mathematical manuscripts in such a way that they can easily be manipulated by machines.
Such languages, when properly designed, can be learned quickly by authors and their
typists, yet manuscripts i this f will lead directly to high quality plates for the
printer with little or no human intervention.

A second step in the solution makes use of classical mathematics to design the shapes
of the letters and symbols themselves. It is possible to give a rigorous difinition
of the exact shape of the letter "a", for example, in such a way that infinitely many
styles (bold, extended, sans-serif, italic, etc.) are obtained from & single definition
by changine only a few parameters. When the same is done for the other letters and
symbols, we obtain a mathematical definition of type fonts, a definition that can be
used on all amchines both now and in the future. The main significance of this approach
is that new symbols can readily be added in such a way that they are automatically
consistent with the old ones.

Of course it is necessary that the mathematically-defined letters be beautiful
according to traditional notions of aesthetics. Given a sequence.of points in the plane,
what is the most pleasing curve that. eonnects them? This question leads" to interesting
mathematics, and one solution based on a novel family of spline curves has Produced
excellent fonts of type in the author's preliminary experiments. We may conclude that
& mathematical approach to the design of alphabets does not eliminate the artists who
have been doing the job for so many years; on the contrary, it gives them an exciting
28“ medium to work with.
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Mathematics books and journals do not look as beautiful as they /——/
— ed to. It is not that their mathematical content is unsatisfactory, rather ;

tha 3he old and well-developed traditions of !ypescmnggﬁave become

too expensive. LFortunately, it now appears that_mathematics itself can ;
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A first step in the solution is to devng a meth for unambiguously
specifying mathematical manuscripts in such a way that they can easily
be manipulated by machines. Such languages, when properly designed,
can be learned quickly by authors and their typists, yet manuscripts in
this form will lead directly to high quality plates for the printer with
little or no human intervention.

A second step in the solution makes use of classical mathematics
to design the shapes of the letters and symbols themselves. It is possnble
to give a ngorous definition of the exact shape of the letter *a?, for
example, in such a way that infinitely many styles (bold, extended,
sans-serif, italic, etc.) are obtained from a single definition by changing
only a few parameters. When the same is done for the other letters and
symbols, we obtain a mathematical definition of type fonts, a definition
that can be used on all machines both now and in the future. The main
significance of this approach is that new symbols can readily be added
in such a way that they are automatically consistent with the old ones. A{-———~

Of course it is necessary that the mathematically-defined letters be
beautiful according to traditional notions of aesthetics. Given a sequence
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4% of points in the plane, what is the most pleasing curve that connects
them? This question leads to interesting mathematics, and one solution

c based on a novel family of spline curves has produced excellent fonts

" of type in the author’s preliminary experiments. We may conclude that

a mathematical approach to the design of alphabets does not eliminate

the artists who have been doing the job for so many years; on the
contrary, it gives them an exciting new medium to work with.
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I will be speaking today about work in progress, instead of completed
research; this was not my original intention when I chose the subject of my
lecture, but the fact is I couldn't get my computer programs working in
time. Fortunately it is just as well that I don't have a finished product
to describe to you today, because research in mathematics is generally
much more interesting while you're doing it than after it's all done.

I will try therefore to convey in this lecture why I am so excited about
the project I am currently working on.

My talk will be in two parts, based on two different meanings of its
title. First I will speak about mathematical typography in the sense of
typography as the servant of mathematics: the goal here is to communicate
mathematics effectively by making it possible to publish mathematical
papers and books of high quality, without excessive cost. Then I will
speak about mathematical typography in the sense of mathematics as the
servant of typography: in this case we will see that mathematical ideas
can make edvances in the art of printing.

Prelﬁnigary examples, To set the stage for this discussion I would like to

show you some examples by which you can "educate your eyes" to see mathematics

as a printer might see it. These examples are taken from the Transactions of

the American Mathematical Society, which began publication in 1900; by now

over 230 volumes have been published. I took these volumes from the library




.shelves and divided them into equivalerce classes based on what I could

perceive to be different styles of printing: two volumes were placed

into the same class if and only if they appeared to be printed in the same
style. It turns out that twelve different styles can be distinguished,

and it will be helpful for us to look at them briefly.

The first example (Fig. la) comes from page 2 of Transactions

volume 1; I have shown only a small part of the page in order to encourage
you to look at the individual letters and their positions rather than to
read the mathematics, This typeface has an old-fashioned appearance,
primarily because the upper case letters and the taller lower case ones
like 'h' and 'k' are nearly twice as tall as the other lower case letters,
and this is rarely seen nowadays. Notice the style of the italic letter 'x',
the two strokes having a common segment in the middle. The subscripts and
superscripts are set in rather small type.

This style was used in volumes 1 to 12 of the Transactions, and also
in the first 21 pages of volume 13, Then page 22 of volume 13 introduced
a more modern typeface (Fig. 1lb). In this example the subscript is still in a
very small font, and unfortunately the Greek & here is almost indistinguishable
from an italic 'a'., Notice also that the printer has inserted more space
before and after parentheses than we are now accustomed to., During the
next few years the spacing within formulas evolved gradually but the
typefaces remained essentially the same up through volume 2L4: with one
exception.

The exception was volume 23 in 1922 (Fig. lc), which in my opinion
has the most pleasing appearance of all the Transactions volumes. This
modern typeface is less condensed, making it more pleasant to read. The
italic letters have changed in style too, not quite so happily -- note the

'x"', for example, which is not as nice as before -- but by and large




one has a favorable impression when paging through this wvolume. Such
quality was not without its cost, however; according to & contemporary
report in the AMS Bulletin [%5, p. 100], the Transactions ceame out

18 months late at the time! Perhaps this is why the Society decided
to seek yet another printer.

In order to appreciate the next change, let's look quickly at two
excerpts from the Bulletin relating to the very first Gibbs lecture
(Fig. 2). The preliminary announcement in 1923 appeared in the modern
typeface used during that year, but the letter shapes in the report of
the first lecture in 1924 were very cramped and stilted. The upper case
letters in the title are about the same, but the lower case letters in
the text are completely different.

This same style appeared in volume 25 of the Transactions (Fig. 1d),
which incidentally was set in Germany in order to reduce the cost of
printing. Note that the boldface letters and the italic letters in this
example are actually quite beautiful -- and we're back to the good old
style of ' x' again -- so the mathematical formulas looked great while
the accompanying text was crowded. Fortunately only three volumes were
published in this style.

A new era for the Transactions began in 1926, when its printing was
taken over by the Collegiate Press in Menasha, Wisconsin. Volumes 28
through 104 were all done in the same style, covering 36 years from 1926
to 1961, inclusive, and this style (Fig. le) was used also in the

American Mathematical Monthly. In general the modern typefaces were quite

satisfactory, but there was also a curious anomaly: Italic letters used
in subscripts and superscripts of mathematical formulas were in a different
style from those used on the main line! For example, notice the two k's

in the first displayed formula of Fig. le: the larger one has a loop, SO




it is topologically different from the smaller one. Simila.i’ly you can see
that the p in ¥ is quite different from the p in 1:;2 . There are
no x's in this example, but if you look at other pages you will find that

the style of x that I like best appears only in subscripts and superscripts.

I can't understand why this discrepancy was allowed to persist for so many years. o
Another period of typographic turmoil for the Transactions began with :
volume 105 in (1962). This volume, which was typeset in Israel, introduced
a switch to the Times Roman typeface (Fig. 1f); an easy way to recognize the
difference quickly is to look at the shading on the letter o , since it now
is somewhat slanted; in the previously used fonts this letter always was more

symmetrical, as if it were drawn with a pen held horizontally, but in Times

pre

Roman it clearly has an oblique stress as if it were drawn by a right-handed

perman., Note that the three k's are topologically the same in the displayed
equation here; but for some reason the two subscript k's are of different
sizes. Many of the Times Italic letters have a somewhat different style

than readers of the Transactions had been accustomed to, and I personally
think that this font tends to make formulas look more crowded. Actually

the changeover to Times Roman and Times Italic wasn't complete; the italic
letter g still had its familiar shape, perhaps because the new shape looked
too strange to mathematicians.,

Volumes 105 through 124 were all done in this style, except for a brief
interruption: In volumes 11k, 115, and 116 the shading on the o 's was
symmetrical and the k's had loops (Fig. 1g). Another style was used for
volumes 125 - 168 (Fig. 1h): again Times Roman was the rule, even in the g's,
except for subscripts and superscripts which were in the style I prefer; for
example, compare the j's and k's. (These latter volumes were typeset in
Great Britain.)

A greatly increased volume of publication, together with the rising

salaries of skilled personnel, was making it prohibitively expensive to use

L




traditional methods of typesetting, and the Society eventually had to resort
to a fancy form of typewriter composition that could simply be photographed
for printing. This unfortunate circumstance made volumes 169 - 198 of the
Transactions look like Fig. 1li, except for volumes 179, 185, 189, 192, 19k,
and 198 which were done in a far better (yet not wholly satisfactory) style
that can be distinguished from Fig. 1f by the italic g's., Fig. 1j was
composed on a computer using a system developed by Richard McQuillen; this
was one of the fruits of an AMS research project supported by the

National Science Foundation [2,3,4,5,6].

Computer typesetting of mathematics was still somewhat premature at the
time, however, and another kind of "cold copy" made its appearance in
volumes 199 through 224 -- an "IBM Compositor" was used, except for volumes
208 and 211 which reverted to the Varityper style of Fig. li. The new
alphabet was rather cramped in agppearance, and some words were even more
crowded than the others (see Fig. lk). At this point I regretfully stopped
submitting papers to the American Math, Society, since the finished product
was just too painful for me to look at. Similar fluctuations of typographical
quality have appeared recently in all technical fields, especially in physics
where the situation has gotten even worse. (The history of publication at
the American Society of Civil Engineers has been discussed in an interesting
and informative article by Paul A, Parisi [4k4].)

Fortunately things are now improving. Beginning with volume 225, which
was published last year, the Transactions now looks like Fig. 1l¢; like Fig. 1j,
it is computer composed, and the Times Roman typeface is now somewhat larger.
I still don't care for this particular style of italic letters, and there are
some bugs needing to be ironed out such as the overlap between lines shown in
this example; but it is clear that the situation is getting better, and perhaps

some day we will once again be able to approach the quality of volumes 23

and 2k,




Com;uter-assisted ccmpositiggf Perhaps the main reason that the situation is
improving is the fact that computers are able to manipulate text and convert it
into a form suitable for printing. Experimental systems of this kind have been
in use since the early 1960's (cf. the book by Barnett [10]), and now they
are beginning to come of age. Within another ten years, I expect that
most office typewriters will be replaced by television screens attached
to a keyboard and to a small computer. It will be easy to make changes
to a manuscript, to replace all occurrences of one phrase by another
and so on, and to transmit the manuscript either to the television screen,
or to a printing device, or to another computer. Such systems are already
in use by most newspapers, and new experimental systems for business
offices actually will display the text in a variety of fonts [26]. It
won't be long before these machines change the traditional methods of
manuscript preparation in universities and technical laboratories.
Mathematical typesetting adds an extra level of complication, of
course. Printers refer to mathematics as "penalty copy", and one of
America's foremost typographers T. L. De Vinne wrote that "[even] under
the most favorable conditions algebra will be troublesome." [17, p. 171.]
The problem used to be that the two-dimensional formulas required
complicated positioning of individual metal pieces of type; but now this
problem reduces to a much simpler one, namely that two-dimensional formulas
need to be represented as a one-dimensional sequence of instructions for
transmission to the computer.
One-dimensional languages for mathematical formulas are now familiar
in programming languages such as FORTRAN, but a somewhat different approach
is needed when all of the complexities of typesetting are considergd.
In order to show you the flavor of languages for mathematical typesetting, _;

I will briefly describe the three reasonably successful systems known to

6




me, The first, which I will call Type C, is typical of the commercially
available systems now used to typeset mathematical journals such as the
Transactions (cf. [12]). The second, which I will call Type B, was
developed at Bell Telephone Laboratories and has been used to prepare

several books and articles including the article that introduced the

system [27]. The third, which I will call Type T, is the one I am
presently developing as part of the system I call TEX [29].f/

Fig. 3 shows how three simple formulas would be expressed in these
three languages. The Type C language uses $f...$s...$t for fractions,
*g for "the next character is Greek", q for the Greek letter theta,

" for superscripts, ¢$r...$t for square roots and ' for subscripts, The
Type B language is more mnemonic, using "over", "theta", "sup", "sqrt",
and "sub" together with braces for grouping when necessary. The Type T
language is similar but it does not make use of "reserved words's

a special character \ is used before any nonstandard text. This means
that spaces can be ignored, while they need to be inserted in just the right
places in the Type B language; for example, the space after the "i" is
important in the example shown, otherwise f(xi) would become f(xi)
according to the Type B rules. Another reason for the \ delimiter

in Type T is that it becomes unnecessary to match each text item against

a stored dictionary, and it is possible to use "sup" to mean supremum
instead of superscript. The special symbols \ { } t+ ¢ in Type T can
be‘changed to any other characters if desired; although these five symbols
don't appear on conventional typewriters, they are common on computer

terminal keyboards.

ifﬁThis has no connection with a similarly-named system recently announced
by Honeywell Information Systems. In my language, the T, E, and X
7 are Greek letters and TEX is pronounced "tech”, following the Greek
words for art and technology.
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Incidentally, computer typesetting brings us some good news: It is now
quite easy to represent square rocts in the traditional manner with radical
signs are vinculums, so we won't have to write xl/2 when we don't want to.i/

None of these languages makes it possible to read complex formulas as
easily as in the two-dimensional form, but experience shows that it is not
difficult for untrained personnel to learn how to type them. According to [12],
"Within a few hours (a few days at most) a typist with no math or typesetting
background can be taught to input even the most complex equations." And the
Type B authors [27] report that "the learning time is short. A few minutes
gives the general flavor, and typing a page or two of a paper generally uncovers
most of the misconceptions about how it works." Thus it will be feasible for
both typists and mathematicians to prepare papers in such a language, without
investing a great deal of effort in learning the system., The only real
difficulties arise when preparing tables that involve tricky alignments.

Once such systems become widespread, authors will be able to prepare their
papers and see exactly how they will look when printed. Everyone who writes
mathematical papers knows that his intentions are often misunderstood by the
printer, and corrections to the galley proofs have a nontrivial probability
of introducing further errors. Thus, in the words of three early users of the
Bell Lab's system, "the moral seems clear. If you let others do your type-
setting, then there will be errors beyond your coutrol; if you do your owmn,
then you have only yourself to hlame." [1l] T-.sonally, I can't adequately
describe how wonderful it feels when I now make a change to the manuscript of
my book, as it is stored in the Stanford computer, since I know that the change
is immediately in effect; it never will go through any middlemen who might
misunderstand my intention.

Perhaps some day a typesetting language will become standardized to the

point where papers can be submitted to the American Mathematical Society

*
—/ (Added in proof.) I was pleased to find that this announcement was greeted
with an enthusiastic round of applause when I delivered the lecture.

8
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from computer to computer via telephone lines. Galley proofs will not be
necessary, but referees and/or copy editors could send suggested changes to
the author, and he could insert these into the manuscript, again via telephone.
Of course I am hoping that if any language becomes standard it will be my
TEX language. Well ... perhaps I am biased, and I know that TEX provides only
small refinements over what is available in other systems. Yet several dozen
small refinements add up to something that is important to me, and I think
such refinement might prove important to other people as well, Therefore
I'd like to spend the next few minutes explaining more sbout TEX.

The TEX input language. TEX must deal with "ordinary" text as well as

mathematics, and it is designed as a unified system in which the mathematical
features blend in with the word-processing routines instead of being "tacked on"
to a conventional typesetting language. The main idea of TEX is to construct
what I call boxes: A character of type by itself is a box, as is a solid black
rectangle, and we use such "atoms" to construct more complex boxes analogous to
"molecules", by forming horizontal or vertical lists of boxes. The final pages
of text are boxes made out of lists of boxes made out of lists of boxes, and
so on down to the individual characters and black rectangles which are not
decomposed further; for example, a typical page of a book is a box formed
from vertical lists of boxes representing lines of type, and these lines of
type are boxes formed from a horizontal list of boxes representing individual
letters. A mathematical formula breaks down into boxes in a natural way; for
example, the numerator and denominator of a fraction are boxes, and so is the
bar line between them (since it is a thin but solid black rectangle). The
elements of a rectangular matrix are boxes, and so on.

The individual boxes of a horizontal list or a vertical list are separated
by a special kind of elastic mortar which I call "glue". The glue between two

boxes has three component parts (x, y, z) expressed in units of length:




the space component, x , is the ideal or normal space desired

between these boxes; -

the stretch component, y , is the amount of extra space which is
tolerable;
the shrink component, z , is the amount of space which may be removed
if necessary.
Suppose the list contains nt+l boxes BO’ Bl’ ) Bn separated by n globs
of glue having specifications (xl,yl, zl), a3 (xn,yn, zn) . When this
list is made into a box, we set the glue according to the desired final
size of the box. If the final size is to be larger than we would obtain
with the normal spacing xl+ cee + X, » we increase the space proportional
to the y's so that the actual space between boxes is

xl+ tyl, 060y xn+ tyn

for some appropriate t > O . On the other hand if the desired final
size must be smaller, we decrease the space to

Xl--tzl, ...,Xn-‘bzn )

in proportion to the individual shrinkages z; - In the latter case
t is not allowed to become greater than 1 ; the glue will never be
smaller than x-z , although it might occasionally become greater than
x+y . Once the glue has been set, the box is rigid and never changes
its size again,
Consider, for example, a normal line of text, which is a list of
individual character boxes. The glue between letters of a word will
have X =y = z = 0 , say, meaning that this word always has the letters
butting against each other; but the glue between words might have x equal to

the width of the letter 'e', and y=x, and 2z = % X , meaning that the




space between words might expand or shrink, The spaces after punctuation
’ marks like periods and commas might be allowed to stretch at a faster
rate but to shrink more slowly.

An important special case of this glue concept occurs when we have

g

: "infinite" stretchability. Suppose the x and 2z components are zero,
but the y component is extremely large, say y 1is one mile long. If
such an element of glue is placed at the left of a list of boxes, the effect | ;
will be to put essentially all of the expansion at the left, therefore
the boxes will be right-justified so that the right edge will be flush f ‘.‘

with the margin, Similarly if we place such infinitely stretchable glue

ki

at both ends of the list, the effect will be to center the line. These
common typographic operations therefore turn out to be simple special k
cases of the general idea of variable glue, and the computer can do its
Jjob more elegantly since it is dealing with fewer primitives. Incidentally -
you will notice from this example that glue is allowed to appear at the
ends of a list, not just between boxes; actually it is also possible to
have glue next to glue, and boxes next to boxes, so that a list of boxes
really is a list of boxes and glue mixed in any fashion whatever. 1
I didn't mention this before, because for some reason it seems easier to
explain the idea first in the case when boxes alternate with glue. *
! The same principles apply to vertical lists. For example, the glue

which appears above and below a displayed equation will tend to be ]

stretchable and shrinkable, but the glue between lines of text will be
calculated so that adjacent base lines will be uniformly spaced when
possible, You can imagine how the concept of glue allows you to do

special tricks like backspacing (by letting x be negative), in a

natural manner.




Line division. One of the more interesting things a system like TEX has to

do is to divide up a paragraph into individual lines so that each line is

about the right length. The traditional way to do this, which is still used
on today's computer typesetting systems, is to make the best possible line
division you can whenever you come to the right margin, but once this line
has been output you never reconsider it again -- you start the next line
Qith no memory of what has come before, Actually it often happens that one
could do better by moving a short word down from one line to the next, but
the problem is that you don't know what the rest of the paragraph will be
like when you have only looked at one line's worth.

The TEX system will introduce a new approach to the problem of line
division, in which the end of a paragraph does influence the way the first
lines are broken; this will result in more even spacing and fewer hyphenated
words. Here is how it works: First we convert the line division problem
to a precisely-defined mathematical problem by using TEX's glue to introduce
the concept of "badness". When a horizontal list of boxes has a certain
natural width w (based on the width of its boxes and the space components
of its glue), a certain stretchability y (the sum of the stretch components)
and a certain shrinkability 2z (the sum of the shrinkages), the badness of
setting the glue to make a box of width W is defined to be l+100t3 in

our previous notation; more precisely, it is

l > if W=W bl

2
WW) R T

&+ 100(—
Y

A\ P
1+1oo("’—z°1) ) AF ez eW<W

infinite 3 if W< w-z .
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Thus if the desired width W is near the natural width w , or if there

is a lot of stretchability and shrinkability, the badness rating is very

small; but if W is much greater than w and there isn't much ability

't;o stretch, we have a lot of badness. Furthermore we add penalty points
to the badness rating if the line ends at a comparatively undesirable
place; for example, when a word needs to be hyphenated, the badness goes
up by 25, and an even worse penalty is paid if we have to break up
mathematical formulas.

The line division problem may now be stated as follows. "Given the

text of a paragraph and the set of all allowable places to break it between

lines, find breakpoints which minimize the sum of the squares of the
badnesses of the resulting lines," This definition is quite arbitrary,
of course, but it seems to work., Preliminary experiments show that the
same choice of breakpoints is almost always found when simply minimizing
the sum of the individual badnesses rather than the sum of their squares,
but it seems wise to minimize the sum of squares as a precautionary
measure since this will also tend to minimize the maximum badness.

Just stating the line division problem in mathematical terms doesn't
solve it, of course; we need to have a good way to find the desired
breakpoints., If there are n permissible places to break (including
all spaces between words and all possible hyphenations), there are ot
possible ways to divide up the paragraph, and we would never have time
to look at them all., Fortunately there is a technique that can be used

to reduce the number of computational steps to order n2 instead of 2" H

this is a special case of what Richard Bellman calls "dynamic programming".,

Let f£(3j) be the minimum sum of badness squares for all ways to divide

the initial text of the paragraph up to breakpoint j , including a

13

.




break at j , and let b(i,j) be the badness of a line which runs from
breakpoint i to breakpoint j . Let breakpoint O denote the beginning
of the paragraph; and let breakpoint n+l be the end of the paragraph,
with infinitely expandable glue inserted just before this final breakpoint.
Then

f(O) =0 oS

£(3) = min (£@E)+b(1,3)%) , for 1< j<ml .
0<i<j

The computation of f£(1), ... ,f(ntl) can be done in order n2 steps,
and f(n+tl) will be the minimum possible sum of badnesses squared. By
remembering the values of i at which the minima occurred for each j ,
we can find breakpoints which give the best line divisions, as desired.
In practice we need not test extremely unlikely breakpoints; for
example, there is rarely any reason to hyphenate the very first word of
a paragraph. Thus it turns out that this dynamic programming method can

be further improved to an algorithm whose running time is almost always

of order n instead of n2 , and comparatively few hyphenations will

need to be tried. Incidentally, the problem of hyphenation itself leads
to some interesting mathematical questions, but I don't have time to
discuss them today. (Cf. [41] and the references in that paper.)

The idea of badness ratings applies in the vertical dimension as
well as in the horizontal; in this case we want to avoid breaking columns
or pages in a bad manner. For example, penalty points are given for
splitting a paragraph between pages after a hyphenation, or for dividing
it in such a way that only one of its lines -- a so-called "widow" line --
appears on a page. The placement of illustrations, tables, and footnotes
is also facilitated by formulating appropriate rules of placement in terms

of badness.
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There is more to TEX, including for example some facilities for

handling the rather intricate layouts often needed to typeset tables
without having to calculate column widths; but I think I have described
the most important principles of its organization. During the next few
months I plan to write the computer programs for TEX in such a way that
each algorithm is clearly explained and so that the system can be
implemented on many different computers without great difficulty; then
I intend to publish the programs in a book so that everyone who wants

to can use them,

Entr'acte., I said at the beginning that this talk would be in two parts,

discussing both the ways that typography can help mathematics and that
mathematics can help typography. So far we have seen a little of both,
but the mathematics has been comparatively trivial. In the remainder of
my lecture I would like to discuss what I believe is a much more significant
application of mathematics to typography, namely to the specification of
the letter shapes themselves. A more accurate way to describe the two
parts of my lecture would be to say that the first part was about TEX,
a system which takes manuscripts and converts them into specifications
about where to put each character on each page; and the second part will
be about another system I'm working on called METAFONT, which generates
the characters themselves, for use in the inkier parts of the printing
business.,

Before I get into the second part of my lecture I need to discuss
recent developments in printing technology. The most reliable way to
print mathematics books of high quality during the past several decades

*
has been to use the monotype process-/ which casts characters in hot lead,

78 Actually the Monotype Corporation now manufactures digital photosetting
equipment as well as the traditional 'monotype' machines.
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together with hand operations for complex built-up formulas. When I
watched this process being applied to my own books several years ago,

I was surprised to learn that the lead type was used to print only one
copy; this master copy was then photographed, and the reel printing took
place from the photographic plates. This somewhat awkward sequence of steps
was justified because it was the best we.y known to give good results.
During the 1960's, however, hot lead type was replaced for many purposes
by devices 'ike the Photon machine used to prepare the printed programs
for this lecture; in this case the process is entirely photographical,
since the letter shapes are stored as small negatives on a rotating disk,
and the plates needed for printing are obtained by exposing the film
after transforming the characters into the proper size and position with
mirrors and lenses (cf.[10]). Such machines are limited by slow speed
and the difficulties of adding new characters.

"Third-generation" typesetting equipment, More recent machines, such as
”~ ~ N~

the one used to prepare the current volumes of the Transactions, have replaced
these "analog" processes by a "digital" one. The new idea is to divide the
page or the photographic negative into millions of tiny rectangles, like a
piece of graph paper or like a television screen but with a much higher
resolution of about 1000 lines per inch. For each of the tiny "pixels"

in such a raster pattern -- there are about a million square pixels in
every square inch -- the typesetting machine decides whether it is to be
black or white, and the black ones are exposed on the photographic plate
by using & very precisely controlled electron beam or laser beam. Since
these machines have few moving parts and require little or no mechanical
motion, they can operate at very high speeds even though they are exposing

only a tiny bit of the film at any time,

16
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Stating this another way, the new printing equipment essentially

treats each page of a book as a huge matrix of O's and 1's, with ink
to be placed in the positions that are 1 while the O positions are
to be left blank. It's like the flashcards at a football stadium,
although on a much grander scale., The total job of a system like TEX
now becomes one of converting an author's manuscript into a gigantic
bit matrix.

The first question we must ask of course is, "What happens to the
quality?" Clearly a television picture is no match for a photograph,
and the digital typesetting machines would be quite unsatisfactory
if their output looked inferior to the results obtained with metal type.
In matters like this, I have to confess being somewhat of a stickler
and a perfectionist; for example, I refuse to eat margarine instead of
butter, and I have never heard an electronic organ that sounds even
remotely as beautiful as a pipe organ. Therefore I was quite skeptical
about digital typography, until I saw an actual sample of what was done

on a high quality machine and held it under a magnifying glass: It was

impossible to tell that the letters were generated with a discrete raster!

The reason for this is not that our eyes can't distinguish more than
1000 points per inch; in appropriate circumstances they can. The reason

is that particles of ink can't distinguish such fine details -- you can't

print the edge of an ink line that zigzags 1000 times on the diagaonal of a

square inch, the ink will round off the edges., In fact the critical
number seems to be more like 500 than 1000, Thus the physical properties
of ink cause it to appear as if there were no raster at all.

It now seems clear that discrete raster-based printing devices will

soon make the other machines obsolete for nearly all publishing activity.
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Thus in future days the fact that Gutenberg and others invented movable
type will not be especially relevant, it will merely be a curious
historical fact which influenced history for only about 500 years.

The ultimately relevant thing will be mathematics: the mathematics

of matrices of O's and 1'si

Semi-philosophical remarks. I have to tell the next part of the story fram

my personal point of view. As & combinatorial mathematician, I really identify
with matrices of O's and 1's, so when I learned last spring about such
printing machines it was impossible for me to continue what I was doing;

I just had to take time off to explore the possibilities of the new equipment.

My motivation was also increased by the degradation of quality I had

been observing in technical journals; and furthermore the publishers of
my books on computer programming had tried valiantly but unsuccessfully
to produce the second edition of volume 2 in the style of the first
edition without using the rafidly-disa.ppearing hot lead process., It
appeared that my books would soon have to look as bad as the journals!:
When I saw that these problems could all be solved by appropriate camputer
programming, I couldn't resist trying to find a solution by myself.

One of the most important factors in my motivation was the knowledge
that the problem would be solved once and for all, if I could find a
purely mathematical way to define the letter shapes and convert them to
discrete raster patterns. Even though new printing methods are bound to
be devised in the future, possibly even before I finish volume seven of
the books I'm writing, any new machi.nes are almost certain to be based
on a high precision raster; and although the precision of the raster may
change, the letter shapes can stay the same forever, once they are defined
in a machine-independent form. My goal was therefore to give a precise
description of the shapes of all the symbols I would need.

-
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I looked at the way fonts of type are being digitized at several

E | places in different parts of the world; it is basically done by taking | 3

| existing fonts and copylng them using sophisticated camera equipment
and computer programs, together with manual editing. But this seemed
instinctively wrong to me, partly because the sophisticated equipment
wasn't readily available in our laboratory at Stanford, and partly
because the copying of copyrighted fonts is of questionable legality,
but mostly because I felt that the whole idea of making a copy was not
penetrating to the heart of the problem, It reminded me of the anecdote
I had once heard about slide rules in Japan. According to this story,
the first slide rule ever brought to the Orient had a black speck of dirt

on it; so for many years all Japanese slide rules had a useless black spot

in this same position! The story is probably apocryphal, but the point !
is that we should copy the substance rather than the form. I felt that
the right question to ask would not be "How should this font of type be
copied?" but rather: "If the great type designers of the past were alive
today, how would they design fonts for the new equipment?" I didn't
expect to be capable of finding the exact answer to this question, of
course, but I did feel that it would lead me in the right direction, so

I began to read about the history of type design.

Well, this is a most fascinating subject, but I can't talk much
about it in a limited time. Two of the first things I read were
autobiographical notes by two well-known 20th century type designers,
Hermann Zapf [51] and Frederic W, Goudy [20], and I was especially

interested by some of Zapf's remarks:

19




With the beginning of the 'sixties .,. I was stimulated by
this new field '[photocomposing]... The type-designer -- or
better, let us start calling him the alphabet designer -- will

have to see his task and his responsibility more than before

| in the coordination of the tradition in the development of ‘
letterforms with the practical purpose and the needs of the ?
advanced e.quipnent of today. ... The new photocomposing systems
using cathode-ray tubes (CRT) or digital storage for the alphabet
bring with them some sbsolutely new technical problems, many

more thm did the Past eee [51) P. 71].

I have the impression that Goudy would not have been so sympathetic

to the new-fangled equipment, yet his book also gave helpful ideas.

Mathematical type design. Fortunately the Stanford Library has a wonderful

collection of books sbout printing, and I had the chence to read many rather
rare source materials. I learned to my surprise that the idea of defining
letters mathematically is by no means new, it goes back to the fifteenth
century and it became rather highly developed in the early part of the
sixteenth, This was the time when there were Renaissance men who combined
mathematics with the real world, and in particular there was an interest in
constructing capital letters with ruler and compass. The first person to
do this was apparently Felice Feliciano, about 1460, whose handwritten
manuscript in the Vatican ILibrary was published 500 years later [19].
Feliciano was an excellent calligrapher who wanted to put the principles

of calligraphy on a sound mathematical foundation., Several other
fif*een-century authors made similar experiments ([8] gives a critical
summary of these early developments), but the most notable work of this

kind appeared in the early sixteenth century.
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The Italian mathematician Luca Pacioli, who had previously written the
most influential book on algebra at the time (one of the first algebra books

ever published), included an appendix on alphabets in his De Divina Proportione,

a book about geometry and the "golden section" which appeared in 1509, Another
notable Italian work on the subject was published by Francesco Torniello in
1517 [48],[33]; Fig. 4 illustrates the letter B as constructed by Pacioli,
Torniello, and by Giovanbattista Palatino [43], Palatino was one of the best
calligraphers of the century, and he did this work about 1550. Similar work
appeared in Germany and France; the German book was probably the most famous

and influential, it was Albrecht Diirer's Underweysung der Messung [18],

a manual of instruction in geometry for Renaissance painters. The French
book was also rather popular, it was Champ Fleury by Geofroy Tory [49], the
first royal printer of France and the man who introduced accented letters
into French typography. Fig. 5 shows Tory's two suggestions for the letter B,
Of all these books I much prefer Torniello's, since he was the only one who
stated the constructions clearly and unambiguously.

Apparently nobody carried this work further to lower case letters, numerals,
or italic letters and other symbols, until more than 100 years later when
Joseph Moxon made a detailed study of some beautiful letters designed in
Holland [38]. The ultimate in refinement of this mathematical approach took
place shortly afterwards when Louis XIV of France commissioned the creation of
a8 Royal Alphabet., A commission of artists and typographers worked on Louis's
project for more than ten years beginning about 1690, and they made elaborate
constructions such as those shown in Fig, 6 [2L4].

Thus it is clear that the mathematical definition of letter forms has a long
history. However, I must also report near-universal agreement among today's
scholars of typography that those efforts were a failure, At wo